131 research outputs found

    Equilibriumlike invaded cluster algorithm: critical exponents and dynamical properties

    Full text link
    We present a detailed study of the Equilibriumlike invaded cluster algorithm (EIC), recently proposed as an extension of the invaded cluster (IC) algorithm, designed to drive the system to criticality while still preserving the equilibrium ensemble. We perform extensive simulations on two special cases of the Potts model and examine the precision of critical exponents by including the leading corrections. We show that both thermal and magnetic critical exponents can be obtained with high accuracy compared to the best available results. The choice of the auxiliary parameters of the algorithm is discussed in context of dynamical properties. We also discuss the relation to the Li-Sokal bound for the dynamical exponent zz.Comment: 11 pages, 13 figures, accepted for publication in Phys. Rev.

    Totally asymmetric exclusion process with long-range hopping

    Full text link
    Generalization of the one-dimensional totally asymmetric exclusion process (TASEP) with open boundary conditions in which particles are allowed to jump ll sites ahead with the probability pl1/lσ+1p_l\sim 1/l^{\sigma+1} is studied by Monte Carlo simulations and the domain-wall approach. For σ>1\sigma>1 the standard TASEP phase diagram is recovered, but the density profiles near the transition lines display new features when 1<σ<21<\sigma<2. At the first-order transition line, the domain-wall is localized and phase separation is observed. In the maximum-current phase the profile has an algebraic decay with a σ\sigma-dependent exponent. Within the σ1\sigma \leq 1 regime, where the transitions are found to be absent, analytical results in the continuum mean-field approximation are derived in the limit σ=1\sigma=-1.Comment: 10 pages, 9 figure

    Short-time dynamics in the 1D long-range Potts model

    Full text link
    We present numerical investigations of the short-time dynamics at criticality in the 1D Potts model with power-law decaying interactions of the form 1/r^{1+sigma}. The scaling properties of the magnetization, autocorrelation function and time correlations of the magnetization are studied. The dynamical critical exponents theta' and z are derived in the cases q=2 and q=3 for several values of the parameter σ\sigma belonging to the nontrivial critical regime.Comment: 8 pages, 8 figures, minor changes - several typos fixed, one reference change

    Numerical Diagonalisation Study of the Trimer Deposition-Evaporation Model in One Dimension

    Get PDF
    We study the model of deposition-evaporation of trimers on a line recently introduced by Barma, Grynberg and Stinchcombe. The stochastic matrix of the model can be written in the form of the Hamiltonian of a quantum spin-1/2 chain with three-spin couplings given by H= \sum\displaylimits_i [(1 - \sigma_i^-\sigma_{i+1}^-\sigma_{i+2}^-) \sigma_i^+\sigma_{i+1}^+\sigma_{i+2}^+ + h.c]. We study by exact numerical diagonalization of HH the variation of the gap in the eigenvalue spectrum with the system size for rings of size up to 30. For the sector corresponding to the initial condition in which all sites are empty, we find that the gap vanishes as LzL^{-z} where the gap exponent zz is approximately 2.55±0.152.55\pm 0.15. This model is equivalent to an interfacial roughening model where the dynamical variables at each site are matrices. From our estimate for the gap exponent we conclude that the model belongs to a new universality class, distinct from that studied by Kardar, Parisi and Zhang.Comment: 11 pages, 2 figures (included

    Invaded cluster algorithm for a tricritical point in a diluted Potts model

    Full text link
    The invaded cluster approach is extended to 2D Potts model with annealed vacancies by using the random-cluster representation. Geometrical arguments are used to propose the algorithm which converges to the tricritical point in the two-dimensional parameter space spanned by temperature and the chemical potential of vacancies. The tricritical point is identified as a simultaneous onset of the percolation of a Fortuin-Kasteleyn cluster and of a percolation of "geometrical disorder cluster". The location of the tricritical point and the concentration of vacancies for q = 1, 2, 3 are found to be in good agreement with the best known results. Scaling properties of the percolating scaling cluster and related critical exponents are also presented.Comment: 8 pages, 5 figure

    Critical behaviour of the 1D q-state Potts model with long-range interactions

    Full text link
    The critical behaviour of the one-dimensional q-state Potts model with long-range interactions decaying with distance r as r(1+σ)r^{-(1+\sigma)} has been studied in the wide range of parameters 0<σ10 < \sigma \le 1 and 116q64\frac{1}{16} \le q \le 64. A transfer matrix has been constructed for a truncated range of interactions for integer and continuous q, and finite range scaling has been applied. Results for the phase diagram and the correlation length critical exponent are presented.Comment: 20 pages plus 4 figures, Late

    First-order transition in the one-dimensional three-state Potts model with long-range interactions

    Full text link
    The first-order phase transition in the three-state Potts model with long-range interactions decaying as 1/r1+σ1/r^{1+\sigma} has been examined by numerical simulations using recently proposed Luijten-Bl\"ote algorithm. By applying scaling arguments to the interface free energy, the Binder's fourth-order cumulant, and the specific heat maximum, the change in the character of the transition through variation of parameter σ\sigma was studied.Comment: 6 pages (containing 5 figures), to appear in Phys. Rev.
    corecore